
Measured deviations from the saddle potential description of clean quantum point contacts

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 164207

(http://iopscience.iop.org/0953-8984/20/16/164207)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 11:29

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/16
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 164207 (5pp) doi:10.1088/0953-8984/20/16/164207

Measured deviations from the saddle
potential description of clean quantum
point contacts
Poul Erik Lindelof and Martin Aagesen

Niels Bohr Institute—Nano-Science Center, University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen, Denmark

E-mail: lindelof@it.dk

Received 12 October 2007, in final form 29 November 2007
Published 1 April 2008
Online at stacks.iop.org/JPhysCM/20/164207

Abstract
Small deviations from the predictions of conductance quantization of three-dimensional saddle
point potential theory measured in side-gated GaAlAs quantum point contacts are reported.
Particular emphasis is put on the so-called 0.7 structure and regular conductance oscillations on
the quantized plateau. A similar temperature dependence of the oscillations and the 0.7
structure is observed. These oscillations give rise to Fabry–Perot type diamond patterns in bias
spectroscopy plots and to oscillations versus bias for fixed gate voltage at conductances
G � 2e2/h. We discuss electron localization due to mismatch to the two-dimensional electron
gas as the cause of the Fabry–Perot resonances. The two possibilities of a charge maximum
(spin 1/2) and minimum in the middle of the constriction are suggested as the root of the
0.7 structure.

(Some figures in this article are in colour only in the electronic version)

Quantum point contacts (QPCs) take many types, shapes,
and materials. All share the common feature of conductance
quantization. The most prominent example is a constriction
formed in a two-dimensional electron (hole) gas (2DE(H)G)
by split gates or side gates to a GaAlAs heterostructure
(Wharam et al 1988, van Wees et al 1988, Danneau et al
2007). Conductance quantization has also been reported in
3D break junctions, cleaved edge overgrowth GaAlAs samples,
and carbon nanotubes. The conductance quantization is never
accurate as in the quantum Hall effect. This is because the
quantization depends sensitively on the boundary condition
between the 1D region and the source and drain contacts. Ideal
conductance quantization is only possible, if the constriction
cross section varies slowly over a Fermi wavelength from
1D to 3D (Glazman et al 1988). The only type of quantum
point contact approaching this limit is the break junction,
where, however, the dimensions and the Fermi wavelength
are both typically on the atomic scale. A 3D constriction
in a semiconductor has so far not been fabricated. The
accuracy of conductance quantization will, even in the ideal
cases, be limited by tunneling and thermal activation over the
barrier in the 1D region. Because none of the quantum point

contacts so far fabricated are ideal, it is perhaps not surprising
that deviations from ideal conductance quantization are the
rule rather than the exception (Fitzgerald 2002, Berggren and
Pepper 2002).

A theoretical model from which all deviations may be
counted is the so-called saddle point potential model, in which
we describe the potential in the vicinity (within a few times the
Fermi wavelength) of the constriction by a quadratic saddle
point with curvatures ωx and ωy . Many 3D saddle point
potentials have been used in the literature, and this model
of penetration through a barrier (by thermal or tunneling
processes) goes back to the theories of nuclear fission barriers
(Hill and Wheeler 1953). In the single electron approximation,
the transmission through the constriction (top point of the
saddle potential) can be analytically calculated and yields the
following simple expression (Büttiker 1989):

G =
∑

n

2e2

h

∫ ∞

0
(1 + e−2πεn )−1

(
−∂ f (E, T )
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)
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and where f (E, T ) is the Fermi function, E is the energy
determined by the gate voltage, T the temperature, V0 is a
constant potential and n = 1, 2, 3 . . ..

Very few attempts have been made to fit this expression
to the conductance versus gate voltage and temperature. This
may be due to the various deviations mentioned below, which
makes such a fit difficult. The main cause of deviations are
impurity potentials, which strongly distort the saddle potential,
giving rise to violent fluctuations in the conductance, and
obscures the conductance quantization (Nixon et al 1991).
Generally, these fluctuations, which are observed at low
temperatures, are smeared by increasing the temperature.
Thermal smearing is already included in equation (1), and
has been studied in an attempts to fit the conductance versus
gate voltage and determine ωx and ωy (Taboryski et al 1995).
Another way of smearing the fluctuations in the conductance,
when plotted versus gate voltage, is by adding a small
magnetic field (∼0.1 T). When the magnetic flux through the
constriction region approaches a flux quantum, the resonances
are smoothed due to phase randomization, and the conductance
quantization versus gate voltage becomes more horizontal.

Over the last few years GaAlAs quantum point contacts
with very few or zero impurities near the constriction have
been fabricated and studied. Such perfect samples are the
prerequisite for studying intrinsic deviations from the saddle
point potential model. A distinct deviation from the prediction
of the saddle point potential model was studied by Thomas
et al (1996), namely the so-called 0.7 structure, which we shall
exemplify in the following. We further present a new Fabry–
Perot type resonance observed in quantum point contacts, but
not studied in detail earlier.

One should bear in mind that even without impurities
and with a perfectly smooth saddle point potential (no edge
irregularities), there is a QPC requirement that the variation of
the potential leading up to the saddle point should be slow on
the scale of the local Fermi wavelength. In the cases, where
this has been studied for quantum point contacts, this is only
marginally fulfilled. Because the electrodes are 2DEGs, the
potential is not a quadratic saddle potential, and the adiabatic
assumption of the QPC is valid only a few Fermi wavelengths
from its center; this will lead to reflections. This, as we discuss
later, may in turn lead to a weak confinement of charge in the
constricted region. Another deviation related to the contacts
between the point contact and the electrodes has been observed
for cleaved edge 1D channels depleted by a top Mo gate (de
Picciotto et al 2005). Here clear quantization of conductance
is observed but at 10–30% too low a value. This also has to
do with the boundary condition at the end of the 1D channel,
where the electrons must be scattered out in the 2D plane of the
quantum well in the cleaved heterostructure. The cleaved edge
1D constriction exhibits a 0.7 structure on top of the 10–30%
reduced quantized conductance value.

Figures 1(A) and (B) show the conductance of a side-
gated QPC seen in the SEM picture of the inset to figure 1(B).
The QPC is formed in a modulation doped 2DEG with
mobility, μ = 70 m2 V−1 s−1, and a carrier density of
n2 = 1.9 × 1015 m−2. The 2DEG is separated by 75 nm
from the (100)-surface of the heterostructure. By e-beam

Figure 1. Experimental conductance traces of as a function of side
gate voltages for a trench etched quantum point contact. A scanning
electron microscope (SEM) picture of the quantum point contact is
shown in the inset to figure 1(B). Outside the two dark V-shaped
trenches in the SEM picture, there is a two-dimensional electron gas
(2DEG) with a carrier density of 1.9 × 1015 m−2 and a mobility of
70 V s m−2. The grey square is from the exposure in taking the SEM
picture. No series resistance has been subtracted from the data.
(A) shows a series of conductance versus side gate voltage all
exhibiting a clear conductance quantization at 2e2/h. The different
traces are taken at temperatures between 0.033 and 1.5 K, and clearly
exhibit an enhanced resonant structure on top of the conductance
quantization as temperature is lowered. At the highest temperature
(1.5 K) the transition from high transconductance (dG/dVGate) to
almost zero transconductance is smoothed by the 0.7 structure
starting around G = 0.7 2e2/h. The 0.7 structure goes away as
temperature is lowered, almost simultaneously with the appearance
of the resonances. (B) shows two traces of conductance versus side
gate voltage with and without a magnetic field of 0.1 T perpendicular
to the 2DEG. A magnetic field of only 0.1 T smooth out the
resonances indicating that they have an extension of about 0.04 μm2

or 200 nm in linear extension. The distance between the minima in
the resonances along the side gate voltage axis are 0.05 V
corresponding to an energy of 0.1 meV, which for a Fabry–Perot
resonance in the region of the 2DEG would correspond to reflectors
200 nm apart.

lithography and etching two V-shaped trenches separate the
side gates from the constriction. The effective width and
length of the constriction is ∼200 nm. By using such a V-
shaped trench etched quantum point contact we minimize the

2



J. Phys.: Condens. Matter 20 (2008) 164207 P E Lindelof and M Aagesen

Figure 2. (A) Transconductance (dG/dVGate) in a grey-scale plot
versus source–drain voltage, VSD, and side gate voltage, VGate. Dark
is large transconductance and white is zero transconductance. This
is often called a bias spectroscopy plot. The large diamond-like white
region is surrounded by dark lines, where the lowest energy of the first
or second one-dimensional subband in the middle of the point contact
equals the chemical potential of source or drain. The additional lines
in the two diamonds, which looks like parabolas in the VSD–VGate

coordinate system are related to the 0.7 structure. A weak resonance
feature is seen for small VSD and almost everywhere along the
VGate axis; this corresponds to the resonant structure displayed also
in figures 1(A) and (B). (B) Enlarged region from (A) to show the
resonant oscillations in the first diamond. Here the conductance is
displayed in a grey-scale representation (black is minimum conduc-
tance) versus VGate and versus VSD ((B) is turned 90◦ anticlockwise
relative to (A)). The oscillations in this grey-scale plot exhibit
small Fabry–Perot resonant tunneling diamonds. The energy periods
of the resonance can be read off along the VSD axis to be 0.1 meV.

chance that we have a charged impurity in the near vicinity
of the two-dimensional constriction. The overall shape of
the conductance versus the side gate voltage (both side gates
connected) is typical of a well-behaved QPC. Figure 1(A)
shows a series of G versus VGate characteristics at different
temperatures. As first noted by Thomas et al (1996) a smooth
transition from G = 0 to 2e2/h at very low temperature
changes at higher temperatures into a characteristic feature

above G = 0.7 2e2/h. This 0.7 structure is also observed at
the higher order conductance plateaus (Kristensen et al 1998a).
The suppression from 2e2/h to 0.7 2e2/h has an activated
behaviour, which depends on the gate voltage. This activation
energy increases roughly as V 2

Gate, i.e. roughly quadratic in
the density in the middle of the constriction (Kristensen et al
1998b). The G versus VGate at the lowest temperatures follow
roughly the prediction of the parabolic saddle potential, but
with a characteristic temperature, T ∗, which is higher than
the experimental value. Another deviation from the prediction
of the saddle point potential model is the appearance of
conductance fluctuations on top of the quantized conductance
plateau. These fluctuations can be quite violent and often
obscure the conductance quantization. For the most regular
samples like the one in figure 1 the fluctuations take the form
of a simple oscillation with an energy periodicity of typically
0.1 meV. It is generally believed that these fluctuations spring
from the irregular side gate geometry or from electrostatic
impurities. The regular oscillations seen in figure 1(A) are
however always observed even in the most perfect QPC and
indicate that this is an intrinsic behaviour created by the
violation of the adiabatic assumption, i.e. that the change in
the constriction width happens on a scale that is shorter or more
abrupt than a few times the local Fermi wavelength. In fact, the
perfect adiabatic assumption in the 3D saddle point model is
never really fulfilled for constrictions in a 2DEG as mentioned
above. A 3D point contact must have a cross section, which
increases only little over a distance of the Fermi wavelength.
Such samples have so far not been made.

The oscillations of G on top of the quantized conductance
plateau are removed in a modest field of 0.1 T as seen
in figure 1(B). This is a result of a weak localization type
interference, where 0.1 T induces a flux quantum h/e in an
area of the QPC. Since the width of the QPC is 200 nm,
this leads to an effective total length of 200 nm. Such a
length corresponds to the Fabry–Perot-like wavelength of the
oscillation observed in figure 1(A) on top of the conductance
plateau. We believe that the periodic variation of the oscillation
is an intrinsic property of a perfect, smooth, and impurity-free
QPC made in a 2DEG. The Fabry–Perot oscillations on the
plateau conductance appear as sharp dips in the conductance
at regular intervals, and the temperature dependence is anti-
correlated with the appearance of the 0.7 structure as seen in
figure 1(A). In fact, we can also roughly extract an activation
energy (broadening) from the temperature dependence of the
width of the oscillations, which is, however, smaller than the
activation energy of the 0.7 structure. A magnetic field of 0.1 T
does not affect the 0.7 structure. A magnetic field of 1–10 T
creates a Zeeman splitting, which in turn creates a conductance
plateau at 0.5 2e2/h. A smooth transition from 0.7 to 0.5 as the
magnetic field is increased to 10 T, has often been taken as a
proof of the 0.7 structure already signals a spin-polarized state
at 0 T (Thomas et al 1996).

A regular conductance oscillation is observed on the
quantized conductance plateau in perfect samples. It seems
therefore to be an intrinsic property of a QPC and not created
by impurities or an irregular side gate geometry. This is further
supported by our bias spectroscopy investigations figures 2
and 3.
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Figure 3. Change in conductance with temperature of a quantum
point contact (QPC, see inset to figure 1(B)) plotted as a function of
source–drain voltage, VSD. The plotted change in conductance, �G,
is a result of changing the temperature of the QPC between a low
temperature (47, 75, 110 and 150 mK) and 200 mK and plotting the
difference in conductance. The side gate voltage, VGate, is fixed at a
value (0.16 V) which place the QPC at G ∼ 0.2 e2/h. The observed
oscillations of the conductance with VSD have the same origin as the
resonances seen in figure 2(B). However, the oscillations at these low
gate voltages are not visible in figures 1(A), (B) and 2(A), (B), and
can only be seen here thanks to our differential measuring technique.
The activation energy of these resonances is similar to the energy of
the Fabry–Perot pattern in figure 2(B) and smaller than the activation
energy of the 0.7 structure.

Figure 2(A) shows the transconductance in a grey-scale
representation as a function of the side gate voltage (y-axis)
and source drain voltage (x-axis) (a bias spectroscopy plot) at
T = 47 mK. The QPC is seen in a SEM photo in figure 1(B)
(inset). The sharp changes in conductance in figure 2(A) is
the darker region. The saddle point potential model explains
the basic diamond structure (with a G = 2e2/h plateau). The
top point of the diamond at VSD = ±4.5 mV and VGate =
0.35 V, is where the 1D singularity in the density of state in
the middle of the QPC of first and second 1D subband hit the
Fermi energy in the source and the drain respectively. There
is a top point in a smaller diamond at VSD = ±3 mV and
VGate = 0.43 V where the 1D singularity in the density of state
of the second 1D subband in the middle of the QPC reaches
another peak in the density of state related to the 0.7 feature.
The same behaviour is seen repeated in the second diamond
(G = 4e2/h). A characteristic V-shaped curve of maximum
dG/dVGate is seen at the very start of the conductance plateau
of the QPC at VSD = 0 and VGate = 0.2 V as well as at
VSD = 0 and VGate = 0.65 V. This is directly the signature
of the 0.7 structure (figure 1(A), 1.5 K), which is observed
at higher temperatures and appears in this bias spectroscopy
plot at higher temperatures as a simple smearing of this V-
shaped feature. Whereas the 0.7 structure as a function of VGate

at VSD ∼ 0 and measured at elevated temperatures is often
strongly perturbed due the irregularities and impurities close to
the QPC, its features in the bias spectroscopy plot are always
there, at least for QPCs with the geometry similar to figure 1(B)
(inset). Being thus more robust, it may be argued that these

features in the bias spectroscopy plots are more fundamental
for an understanding of the 0.7 structure than the G versus VGate

anomalies.
Another more feeble feature, not predicted by the saddle

point potential model, is seen in figure 2(A) in the region
of small VSD (±0.5 mV) and in a wide range of gate
voltages. The structure appears to reflect a Fabry–Perot mode
with sharp dips in conductance as seen in figure 2(B) as
already noted in figure 1(A). For the QPCs with the smallest
random fluctuations such oscillations are always visible at the
lowest temperatures. These structures grow to a detectable
level around the same low temperature as where the 0.7
structure disappears (see figure 1(A)). We have also conducted
experiments at fixed gate voltages. To enhance sensitivity we
have made a differential measurement, where the conductance
at T = 200 mK and at a number of lower temperatures have
been subtracted from each other. Such a series of differential
measurements are shown as a function of VSD in figure 3.
As seen, the conductance oscillations grow as temperature
is lowered, and the oscillations are indeed very regular, and
seen at a low conductance (G ∼ 0.2 e2/h), where the
oscillations are not directly visible as in figures 2(A) and (B).
This consolidates our belief that for such very clean QPCs
these oscillations are intrinsic to the QPC and determined
by an effective length of the QPC. In order to calculate the
resonance energies, the variation of the Fermi energy with
distance from the center of the QPC must be taken into
account. In addition, the geometrical shape of the QPC is
important. An approximate characteristic length of 300 nm
seems meaningful. Within a length of ±300 nm, there are
around two electron charges at VGate = 0.16 V. We believe
the Coulomb blockade energy for these charges is smeared
due to the large transmission to the source and drain 2DEG
and therefore only directly visible in the region for very
small conductance (Gloos et al 2006, Yoon et al 2007). Our
very regular conductance oscillations in a QPC also focuses
attention to the importance of the intrinsic potential landscape
in the close vicinity of an ideal QPC made from a 2DEG.

The very regular Fabry–Perot data around the 0.7 structure
of the QPC seen in all quantum point contacts at very low
temperatures is puzzling and can hardly be related to random
impurities in the vicinity of the quantum point contact. In stead
it gives indication for a standing electron wave (eigenenergy)
between two level branching points on each side of the
QPC (here estimated to be 300 nm away) and give reason
to believe that a weakly localized number of electrons are
present in the QPC near pinch off. This may be described
by the Wigner lattice approach by Matveev (2004). There
is an additional boundary condition given by the symmetry
of the QPC. The electronic eigenenergy wavefunction may
have either a minimum or a maximum density in the center
of the QPC, where there is a potential maximum. This gives
always two solutions (isomers), which may be separated by
some tenths of meV. This energy difference is smallest for
the lowest density and increase as the electron density in the
middle of the constriction increases and screening is strong.
The state with a minimum in the electron density in the middle
of the constriction will have the lowest energy. The two
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configurational states are not there simultaneously, but there
will be a thermal fluctuation between these two isomers as
pointed out by Lindelof (2001). This picture does not need
the spin polarization picture, which has been the dominating
belief since the pioneering work of Thomas et al (1996) and
the theoretical studies by Wang and Berggren (1998) and by
Reimann et al (1998). The 0.7 structure may come from
thermal occupancy of these two configurations of the QPC.
There is a thermal fluctuation between the two isomers such
that the conductance jumps between the values given by one
or the other. The isomer with a localized electron (and a
spin 1

2 ) in the middle of the constriction is the thermally
excited configuration, which will give rise to a Kondo type
transmission (Cronenwett et al 2002), if at all populated. The
ground state configuration gives a conductance quantization in
the usual way at low temperatures.
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